Ultraviolet SO₂ imaging systems allow insights into degassing processes occurring on short timescales at Kilaeua’s summit.

Introduction

Ultraviolet (UV) cameras allow the two-dimensional imaging of SO₂ distributions at temporal resolutions on the order of 1Hz. Optical band-pass filters that selectively transmit only UV wavelengths at which SO₂ absorption occurs (for reference, the sensitivity at which absorption is negligible is positioned in the camera’s optical system, thus providing selective sensitivity to SO₂). As SO₂ is one of the main volatile species associated with high-temperature volcanic degassing, UV camera systems are increasingly being applied to volcanic environments for monitoring and research purposes.

Dealing with optically thick plumes

Ultraviolet (UV) imaging systems allow insights into degassing processes occurring on short timescales at Kilaeua’s summit.

** deriving a high resolution SO₂ emission rate**

Since the UV camera system measures the SO₂ concentration integrated along the line of sight (VSO₂), the emission rate \(\Phi \) can be derived by integrating \(VSO₂ \) along a cross-section through the plume and multiplying by the plume velocity \(v \):

\[
\Phi = v \int VSO₂ dx \cdot \sin(\theta)
\]

The \(\Phi \) function ensures that only the velocity component perpendicular to the integrated cross-section is used (\(\theta \) is the angle between \(\mathbf{v} \) and \(\mathbf{x} \)). The plume velocity \(v \) can also be obtained directly from the image. For this we plot the distribution of SO₂ along the plume axis (shown in Fig 3a) as a function of time (Fig 3b). The slope of the structure in this image (bottom left to top right) is a measure of plume speed.

Linking seismicity and gas emissions

The lava level at Kilaeua’s summit has been observed to fluctuate between two seemingly stable levels, one approximately 10–20 m above the other. During lava low stand, SO₂ emissions are significantly higher than during periods of high stand. High-frequency (HF > 1Hz) seismicity appears well correlated to SO₂ emission rate. In fact, besides the obvious change in HF amplitude between high and low stand, a correlation between the HF seismic energy and SO₂ emission rates is often observed on much shorter timescales of seconds to minutes as well.

References