Recent developments in regional simulations of fault and earthquake processes: Applications to volcanic systems

Jim Dieterich

University of California, Riverside

With thanks to:
Keith Richards-Dinger
Harmony Colella
Valerie Cayol
Jacquelin Gilchrist
“We visited the crater intending to stay all night, but the bottle containing our provisions got broke, and we were obliged to return.”

Mark Twain, 7 June 1866
Some observations about internal dynamics of volcanic systems

• Research is inherently multidisciplinary
• Dynamical system – tightly coupled interactions among
 • Magma transport, intrusion and eruption
 • Faulting (stable slip, earthquakes, fault creep)
 • Thermal structure
 • Geochemical evolution (magma and volatiles)
 • Ground water
• Phenomena we observe emerge from dynamical interactions of the system
• Monitoring observations are not well-integrated
• Analyses tend to focus on quantifying observations

Question: How can we make progress on system-level modeling of volcanic systems?
Southern California Earthquake Center (SCEC)

- Began in 1991 with 7 core institutions
- Now 17 core institutions, >60 participating organizations, ~600 scientists and students
- Originally organized around the concept of the Master Model of Earthquakes
- Quickly realized need for community models that describe the system

Core Institutions
- University of Southern California
- California Institute of Technology
- Columbia University
- Harvard University
- Massachusetts Institute of Technology
- San Diego State University
- Stanford University
- University of California, Los Angeles
- University of California, Riverside
- University of California, San Diego
- University of California, Santa Barbara
- University of California, Santa Cruz
- University of Nevada, Reno
- U.S. Geological Survey, Golden
- U.S. Geological Survey, Menlo Park
- U.S. Geological Survey, Pasadena
- U.S. Geological Survey,
SCEC Community Models

Stress model (planning stage)
Hawaiian Volcano Community Models?

- Fault model
- Seismic velocity model
- Deformation model $f(t)$
- Magma Reservoir/conduit model
- Thermal model
Rate-State Quake Simulation (RSQSim)

- Boundary elements – 50,000 fault elements
 - Detailed representation of complex fault network geometry
- 3D stress interactions
- Strike-slip, dip-slip, and mixed mode fault slip
- Basic elements of rate-state friction
 - Time-dependent nucleation
 - Earthquake clustering (foreshocks and aftershocks)
- Represent earthquake slip, fault creep, slow slip events (SSEs)
- Very efficient computations (10^6 year simulation of >6x10^6 earthquake events)
Normal Stress on Fault
(Background Stress = 120 MPa)

DYNA3D – Fully dynamic finite element simulation

RSQsim – Fast quasi-dynamic simulation
SCEC community Fault Model

Data sources
- Geologic mapping
- Historic earthquakes
- Microseismicity
- Drilling
- Reflection surveys
California Model

- ~3 km squares
- ~15,000 elements (no creep)
- ~35,000 elements (deep fault creep)
Entire California fault system – Cumulative magnitude-frequency

Cumulative number

Magnitude

All California observed seismicity, excluding Cascadia, with 95% confidence bounds (UCERF2)

$b = 1$
Magnitude-area Scaling
Showing only 200 years of simulated events

Wells and Coppersmith

RSQSim

- Wells and Coppersmith (1994)
- WGCEP 02 Appendix D
- Hanks and Bakun (2007)
Example – 1906 type earthquake on San Andreas Fault
Inter-event Waiting Time Distributions

California Catalog: M5 to M6

- Probability Density (s)
- Interevent Time (s)
- Slope = -0.884

California Catalog: M6 to M7

- Probability Density (s)
- Interevent Time (s)

California Catalog: M7+

- Probability Density (s)
- Interevent Time (s)

RSQSim Catalog: M5–M6

- Probability Density (s)
- Interevent Time (s)
- Slope = -0.882

RSQSim Catalog: M6–M7

- Probability Density (s)
- Interevent Time (s)
- Slope = -0.998

RSQSim Catalog: M7+

- Probability Density (s)
- Interevent Time (s)
- Slope = -1
Space – Time Distributions
Repeating Earthquakes

Omori's law $R \propto t^{-1}$

Schaff, Beroza, Shaw (1998)
There were 72 aftershocks (M>4) in the 2 days following the M7.8 earthquake.

183 aftershocks in the 100 days following the M7.5 earthquake.

220 events > M 7

137 isolated by at least 4 years,
34 pairs, 5 triples
Aftershocks of Non-Clustered and Clustered M≥7 Events

Clustered: Red
Non-Clustered: Blue

Seismicity relative to background

Time after mainshock (yr)

Slope=-0.93
Slope=-0.96
Linking short-term and long-term forecasts
Cumulative probability of earthquakes
(on San Jacinto fault segment of the San Jacinto fault)

- From random time
- From time of $M\geq 6.5$ on adjacent Anza segment

Cumulative Probability

Waiting time (years)

$P \sim 0.06$
In 1st hour

$P \sim 0.60$
In 1st hour
Kilauea and Mauna Loa

• Dynamical system – made up of interacting dynamical systems
 • Faulting (stable slip, earthquakes, fault creep)
 • Magma transport, intrusion and eruption
 • Thermal structure
 • Geochemical evolution (magma and volatiles)
 • Ground water
Rift expansion

\[\mu_{eff} = \mu - \frac{p_f}{\sigma} \]

\[\rho_m = 2.7 \]

\[\rho_1 = 2.3 \]

Change of Stress Along Rift Axis Caused By Slip on a Patch at Base of Wedge

A schematic model of Kilauea south flank
Earthquake rate formulation

• Earthquake occurrence is controlled by earthquake nucleation processes

• Earthquake nucleation required by rate- and state-dependent friction is time dependent and highly non-linear in stress and gives the following

\[R = \frac{r}{\gamma S_r} \]

\[d\gamma = \frac{1}{A \sigma} \left[dt - \gamma dS \right] \]

Dieterich (2007) *Treatise on Geophysics*
M~5 Earthquakes following Sept. 13 1977 eruption

From Dieterich, Cayol, Okubo (2003) USGS Prof Paper 1676
M~5 Earthquakes following Jan. 1, 1983 eruption

From Dieterich, Cayol, Okubo (2003) USGS Prof Paper 1676
Coulomb stress 1 MPa/division

Deformation \dot{S}
- 1976-1983: 0.5 MPa/yr
- >1983: 0.1 MPa/yr

Seismicity \dot{S}
- 1976-1983: 0.3–0.6 MPa/yr
- >1983: ≤0.1 MPa/yr

Rift intrusion rate
- 1976-1983: 0.18 km3/yr
- >1983: 0.06 km3/yr

NS extension (Summit region)
- 1976-1983: 25 cm/yr
- >1983: 4 cm/yr

From Dieterich, Cayol, Okubo (2003) USGS Prof Paper 1676
Montgomery-Brown, and others, 2009, JGR
Kalapana Earthquake M7.3 1975

Horizontal displacement Vertical displacement

-12 bars

5 m

-1 m

-3 m

-2 m

12 bars

5 km scale
Kalapana Earthquake M7.7 1975
Schematic of Kilauea south flank
Cascadia – type SSEs

Modified from McCrory et al. (2006)
Cascadia megathrust model

Depth to megathrust contour interval = 5km
Colella and others (GRL, 2011)
Colella and others (GRL, submitted)
Colella and others (GRL, submitted)
Slip
Space-time of slipping elements
Example of space-time of tectonic tremor
Colella and others (GRL, submitted)