Functions

Standard Form of Quadratic Equation

\[ax^2 + bx + c = 0 \]

Quadratic Formula

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

\[a \neq 0 \]

Factoring by Guessing and Checking

\[2x^2 + 11x - 15 = 0 \]

1. Find integers \(r \) and \(s \) such that
 \[rs = (\text{coef. of } x^2) (\text{constant term}) = ac = (2)(15) \]
 \[r + s = \text{coef. of } x = b = 11 \]
 \[r = 6, s = 5 \]

2. Rewrite \(bx \) as \(rs + sx \)
 \[2x^2 + 11x + 15 = 2x^2 + 6x + 5x + 15 \]

3. Factor by grouping
 \[2x^2 + 6x + 5x + 15 = 2x(x + 3) + 5(x + 3) = (2x + 5)(x + 3) \]

Solving the Quadratic Equation Completing the Square

\[3x^2 + 6x - 15 = 0 \]

1. Divide by the coefficient of \(x^2 \)
 \[x^2 + 2x - 5 = 0 \]

2. Move the constant to the other side
 \[x^2 + 2x = 5 \]

3. Half the coefficient of \(x \), square it, and add it to both sides
 \[x^2 + 2x + \left(\frac{2}{2}\right)^2 = 5 + \left(\frac{2}{2}\right)^2 \]

4. Factor the left side
 \[x^2 + 2x + 1 = 6 \]
 \[(x + 1)^2 = 6 \]

5. Use Square Root Property
 \[x + 1 = \sqrt{6} \]

6. Use Absolute Value Property
 \[x + 1 = \pm \sqrt{6} \]

7. Solve for \(x \)
 \[x = -1 \pm \sqrt{6} \]

Arithmetic Operations

\[ab + ac = a(b + c) \]

\[a \left(\frac{b}{c}\right) = \frac{ab}{c} \]

\[\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \]

\[\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd} \]

\[\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} \]

\[\frac{ac}{bd} = \frac{ad}{bc} \]

Exponent Properties

\[a^n a^m = a^{n + m} \]

\[\frac{a^n}{a^m} = a^{n - m} = \frac{1}{a^{m-n}} \]

\[(a^n)^m = a^{nm} \]

\[a^0 = 1, a \neq 0 \]

\[(ab)^n = a^n b^n \]

\[\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} \]

\[a^{-n} = \frac{1}{a^n} \]

\[\frac{1}{a^{-n}} = a^n \]

Logarithmic Properties

\[y = \log_b x \text{ is equivalent } x = b^y \]

\[\log_b b^x = x \]

\[b \log_b x = x \]

\[\log_b(1) = 0 \]

\[\log_b(x^y) = y \cdot \log_b(x) \]

\[\log_b(xy) = \log_b x + \log_b y \]

\[\log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y \]

Absolute Value Properties

\[|a| = a \text{ if } a \geq 0 \]

\[|a| = -a \text{ if } a \leq 0 \]

\[|a| = |a| \]

\[|a| = |a| \]

\[|a| = |a| \]

\[|a + b| \leq |a| + |b| \] (Triangle Inequality)

Properties of Radicals

\[\sqrt[n]{a} = a^{\frac{1}{n}} \]

\[\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b} \]

\[\sqrt[n]{\sqrt[m]{a}} = \sqrt[m]{\sqrt[n]{a}} \]

\[\sqrt[n]{a^n} = a, \text{ if } n \text{ is odd} \]

\[\sqrt[n]{a^n} = |a|, \text{ if } n \text{ is even} \]

Inverse Functions

Composition of Functions

\[(f \circ g)(x) = f(g(x)) \]

\[(g \circ f)(x) = g(f(x)) \]

\[f \circ f^{-1}(x) = x \]

Algebra of Functions

\[(f + g)(x) = f(x) + g(x) \]

\[(f - g)(x) = f(x) - g(x) \]

\[(f \cdot g)(x) = f(x) \cdot g(x) \]

\[\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0 \]