ABUNDANCE AND DISTRIBUTION OF FERAL PIGS AT HAKALAU FOREST NATIONAL WILDLIFE REFUGE, 2010–2013

Steven C. Hess¹, Christina R. Leopold², and Steve J. Kendall³

¹U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawai’i National Park, HI 96718
²Hawai’i Cooperative Studies Unit, University of Hawai’i at Hilo, P.O. Box 44, Hawai’i National Park, HI 96718
³Big Island National Wildlife Refuge Complex, 60 Nowelo Street, Suite 100, Hilo, HI 96720

Hawai’i Cooperative Studies Unit
University of Hawai’i at Hilo
200 W. Kawili St.
Hilo, HI 96720
(808) 933-0706
November 2013
This product was prepared under Cooperative Agreement CA03WRAG0036 and SubAgreement 03036WS021 for the Pacific Island Ecosystems Research Center of the U.S. Geological Survey.
ABUNDANCE AND DISTRIBUTION OF FERAL PIGS AT HAKALAU FOREST NATIONAL WILDLIFE REFUGE, 2010–2013

STEVEN C. HESS¹, CHRISTINA R. LEOPOLD², AND STEVE J. KENDALL³

¹ U.S. Geological Survey, Pacific Island Ecosystems Research Center, Kilauea Field Station, P.O. Box 44, Hawai‘i National Park, HI 96718
² Hawai‘i Cooperative Studies Unit, University of Hawai‘i at Hilo, P.O. Box 44, Hawai‘i National Park, HI 96718
³ Big Island National Wildlife Refuge Complex, 60 Nowelo Street, Suite 100, Hilo, HI 96720

Hawai‘i Cooperative Studies Unit
University of Hawai‘i at Hilo
200 W. Kawili St.
Hilo, HI 96720
(808) 933-0706

November 2013
TABLE OF CONTENTS

List of Tables ... iii
List of Figures .. iii
Abstract .. 1
Introduction ... 1
Methods .. 1
Results .. 4
Discussion ... 5
Acknowledgements .. 9
Literature Cited .. 9

LIST OF TABLES

Table 1. Summary of transects and number of stations and plots surveyed at Hakalau Forest Unit, Big Island National Wildlife Refuge Complex, Hawai'i Island, 2010–2013. ... 4
Table 2. Estimated abundance of feral pigs within eight enclosed management units and an unenclosed area of Hakalau Forest Unit, 2010–2013. .. 6

LIST OF FIGURES

Figure 1. Ungulate management units at the Hakalau Forest Unit, Big Island National Wildlife Refuge Complex, Hawai'i Island, and the distribution of feral pigs as determined by activity surveys in 2004. .. 2
Figure 2. Number of feral pigs removed and reconstructed population from a management unit, Hakalau Forest Unit, 1988–2004. .. 5
Figure 3. The highest-ranked predictive model for estimating feral pig density, 1992–2004. 7
Figure 4. Surveys of feral ungulate sign at Hakalau Forest Unit, 2010–2013. 8
ABSTRACT

The Hakalau Forest Unit of the Big Island National Wildlife Refuge Complex has intensively managed feral pigs (Sus scrofa) and monitored feral pig presence with surveys of all managed areas since 1988. Results of all available data regarding pig management activities through 2004 were compiled and analyzed, but no further analyses had been conducted since then. The objective of this report was to analyze recent feral ungulate surveys at the Hakalau Forest Unit to determine current pig abundance and distribution. Activity indices for feral pigs, consisting of the presence of fresh or intermediate sign at 422 stations, each with approximately 20 sample plots, were compiled for years 2010–2013. A calibrated model based on the number of pigs removed from one management unit and concurrent activity surveys was applied to estimate pig abundance in other management units. Although point estimates appeared to decrease from 489.1 (±105.6) in 2010 to 407.6 (±88.0) in 2013, 95% confidence intervals overlapped, indicating no significant change in pig abundance within all management units. Nonetheless, there were significant declines in pig abundance over the four-year period within management units 1, 6, and 7. Areas where pig abundance remained high include the southern portion of Unit 2. Results of these surveys will be useful for directing management actions towards specific management units.

INTRODUCTION

The Hakalau Forest Unit of the Big Island National Wildlife Refuge Complex has intensively managed feral pigs (Sus scrofa) and monitored feral pig presence with surveys of all managed areas since 1988. Results of all available data regarding pig management activities through 2004 were compiled and analyzed by Hess et al. (2007). No further analyses had been conducted of pig monitoring data collected since 2004 when 39.95 km² of the refuge was pig-free (Figure 1). The abundance and distribution of feral pigs may have changed during this intervening period as a result of more recent management actions or other factors; hence, an analysis of recent data may provide an updated perspective and inform management decisions. The objective of this report is to analyze recent feral ungulate surveys at the Hakalau Forest Unit to determine current pig abundance and distribution.

METHODS

Hess et al. (2007) reconstructed the standing population of feral pigs in a 22.13 km² management unit (Unit 2) of the Hakalau Forest Unit based on the number of pigs removed and their estimated ages for the period of 1988–2004. The ages of 623 pigs were estimated by tooth eruption and wear patterns (Matschke 1967). Dates of birth were back calculated by using the estimated age of each animal when it was removed (Anderson and Stone 1994). The ages of 11 additional pigs were estimated by the regression equation of mass and sex as described in Hess et al. (2007). Standing populations were estimated for each calendar year using estimated birth dates to determine how many animals had been born into the population and not removed, such that:
Figure 1. Ungulate management units at the Hakalau Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai'i Island, and the distribution of feral pigs as determined by activity surveys in 2004. Light blue circles are stations that were not sampled in 2004. The units are bisected by the Piha State Game Management Area (GMA).
The number of pigs alive in the last year of removals = \(Y_0 \)

Pigs alive one year prior to last removal = \([Y_{-1} + (Y_0 \geq 1)] \) \(\quad (1) \)

Pigs alive two years prior to last removal = \([Y_{-2} + (Y_{-1} \geq 1) + (Y_0 \geq 2)] \) \(\quad (2) \)

Pigs alive three years prior to last removal = \([Y_{-3} + (Y_{-2} \geq 1) + (Y_{-1} \geq 2) + (Y_0 \geq 3)] \) \(\quad (3) \)

Pigs alive four years prior to last removal = \([Y_{-4} + (Y_{-3} \geq 1) + (Y_{-2} \geq 2) + (Y_{-1} \geq 3) + (Y_0 \geq 4)] \) \(\quad (4) \)

Because age estimates were available for only 634 of the 757 pigs (83.75%) removed from Unit 2, the number of pigs in the reconstructed population was corrected for the proportion of aged pigs in each age category based on the available data. Unit 2 was pig free by 2004.

The known density of feral pigs from the reconstructed population and feral pig activity indices were used to develop predictive models of feral pig indices. These analyses were restricted to Unit 2 after a pig-proof fence enclosed the population in 1992. The estimated standing population at each time step was divided by the area of the unit to determine pig density, and density values were used as the response variable for regression analysis. The proportion of stations with fresh or intermediate pig sign and the proportion of stations with all sign were determined for each calendar year. Proportions were transformed to arcsine values (Sokal and Rohlf 1981) and used as predictor variables in linear regression following the approach of Anderson and Stone (1994).

Models were constructed with all combinations of predictors except where the same predictors appeared more than once (e.g., fresh sign with all sign), both with and without intercepts (i.e., constant proportion indices; Lancia et al. 1994). Interaction terms were not considered. Models were ranked with Akaike's Information Criterion corrected for small sample size (AICc; Burnham and Anderson 1998). Confidence intervals (95% CI) were determined for estimated regression equations of the highest ranked models. The regression equation of the highest ranked model was applied to predict the density of feral pigs in each of the other management units and other areas where activity indices were measured. Pig densities in unenclosed areas and estimated population sizes within enclosed units with 95% predictive confidence intervals were determined based on the estimated regression equation, its variance, and the area of each unit.

Activity indices for feral pigs, consisting of the presence of fresh or intermediate sign (Stone et al. 1991) at 422 stations, each with approximately 20 sample plots, were compiled for years 2010–2013. Surveys were conducted during November 2010 and 2011, October 2012, and March 2013 (Table 1). These data were joined to their spatial coordinates and plotted by year using ArcGIS 9.2 (ESRI 2006). Stations were assigned to management units by UTM (Universal Transverse Mercator) coordinate locations. The proportion of sample plots with fresh, intermediate, and both fresh and intermediate feral pig sign (hereafter all sign) was calculated for each survey within each management unit.
Table 1. Summary of transects and number of stations and plots surveyed at Hakalau Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai’i Island, during 2010–2013. The number of sampled transects and stations varied annually, and some stations were not sampled because they extended beyond management units.

<table>
<thead>
<tr>
<th>Transect</th>
<th>Number of stations</th>
<th>Number of stations surveyed</th>
<th>Number of plots surveyed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>1A</td>
<td>20</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>1B</td>
<td>17</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>26</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>27</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>27</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7A</td>
<td>26</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>27</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>8A</td>
<td>26</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>27</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>28</td>
<td>28</td>
<td>19</td>
</tr>
<tr>
<td>11</td>
<td>28</td>
<td>22</td>
<td>17</td>
</tr>
<tr>
<td>13</td>
<td>31</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>31</td>
<td>25</td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td>422</td>
<td>352</td>
<td>75</td>
</tr>
</tbody>
</table>

RESULTS

The standing population of feral pigs in Unit 2 was reconstructed from 634 (83.75%) aged pigs of the 757 pigs removed from 1988–2004 (Figure 1). Sixteen different models of pig sign were all significantly and positively related to pig density (Hess et al. 2007). Models of feral pig activity with all sign, fresh sign, and intermediate sign, but without intercepts, were essentially equivalent among the highest ranked by AICc. The highest ranked model with an intercept was >2.6 AICc units lower than any of the three highest ranked models. Activity indices were variable at densities >8 pigs/km² (Figure 2). Year 1994 was a strong outlier in every model, having a high density of feral pigs with relatively low activity index values. A small number of pigs remained after most had been removed by the year 2000, resulting in four years with very low density. The resulting predictive equation was applied to estimate abundance in other management units:

\[
\text{Density} = 20.665 \times \text{arcsine transformed (proportion of plots containing pig sign)} \quad (5)
\]
Figure 2. Number of feral pigs removed and the reconstructed population from a 22.13 km² management unit at Hakalau Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai’i Island, 1988–2004.

When the model was applied to recent survey data, densities of feral pigs indicated ingress in several cases. The unmanaged area of Lower Maulua and units 1 and 5 had predicted densities of feral pigs in 2010 that were greater than the Unit 2 maximum of 12.1 pigs/km² (Table 2). While the model can reliably estimate that density was >12.1 pigs/km², it cannot provide accurate density estimates beyond this number. Units 1, 6, and 7 density estimates for 2012–2013 are similar to those after intensive pig management during 2002–2004 (Hess et al. 2007), and current density estimates for these units are low. The spatial distribution of stations surveyed during 2010–2013 includes seven management units, and survey efforts varied annually (Figure 3). The proportion of plots with pig sign at each station is displayed in six categories: 0% sign (white); 1–10% (green); 11–30% (blue); 31–50% (yellow); 51–79% (orange); and 80–100% (red; Figure 4).

DISCUSSION

Although recent surveys of ungulate sign suggest an overall decline in point estimates of pig abundance throughout all managed areas of the refuge over the period of 2010–2013, overlapping confidence intervals indicate that these estimates do not differ significantly. Nonetheless, there were significant declines in pig abundance over the four-year period within units 1, 6, and 7. Areas where pig abundance remained high included the southern portion of Unit 2, particularly in 2012 when an estimated 231.6 (±50.0) pigs inhabited the unit. Periodic surveys of unenclosed areas, such as Lower Maulua, would provide further understanding of fluctuations in estimated abundance resulting from limitations in the model to overcome variability in environmental factors such as recent precipitation and the inability to estimate densities outside the range of the data used to derive the model. The detection of changes in
Table 2. Estimated abundance of feral pigs (±95% confidence intervals) within eight enclosed management units and an unenclosed area of Hakalau Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai’i Island, 2010–2013. Estimated abundance is based on index surveys calibrated with a model developed by Hess et al. (2007).

<table>
<thead>
<tr>
<th>Management unit</th>
<th>Area km²</th>
<th>Pig abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2010</td>
</tr>
<tr>
<td>Middle Honohina Unit</td>
<td>2.21</td>
<td>33.4 (±7.2)</td>
</tr>
<tr>
<td>Shipman Unit 2</td>
<td>22.13</td>
<td>178.0 (±38.4)</td>
</tr>
<tr>
<td>Lower Honohina Unit 3</td>
<td>7.99</td>
<td>86.3 (±18.6)</td>
</tr>
<tr>
<td>Upper Maulua Unit 4</td>
<td>8.39</td>
<td>84.3 (±18.2)</td>
</tr>
<tr>
<td>Upper Honohina Unit 5</td>
<td>4.49</td>
<td>56.1 (±12.1)</td>
</tr>
<tr>
<td>Middle Hakalau Unit 6</td>
<td>5.23</td>
<td>15.6 (±3.4)</td>
</tr>
<tr>
<td>Middle Papaikou Unit 7</td>
<td>7.22</td>
<td>35.4 (±7.6)</td>
</tr>
<tr>
<td>Pua Akala Unit 8</td>
<td>2.30</td>
<td>--</td>
</tr>
<tr>
<td>Lower Maulua Unenclosed</td>
<td>--</td>
<td>15.1/km² (± 3.3/km²)</td>
</tr>
<tr>
<td>Total</td>
<td>59.96</td>
<td>489.1 (±105.6)</td>
</tr>
</tbody>
</table>

The distribution and abundance of feral pigs at Hakalau Forest Unit necessitates surveys of ungulate sign on each transect at least once per year. Results of these surveys will be useful for directing management actions towards specific management units.
Figure 3. The highest-ranked predictive model for estimating feral pig density derived from a reconstructed population at Hakalau Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai’i Island, 1992–2004. The dashed line represents the model, solid light lines represent 90% prediction confidence intervals (CI), and solid bold lines represent 95% prediction CI.
Figure 4. Surveys of feral ungulate sign at Hakalau Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai‘i Island, 2010–2013. Six categories indicate the proportion of plots where pig sign was detected at each station.
ACKNOWLEDGEMENTS

This work was funded by the U.S. Fish and Wildlife Service-U.S. Geological Survey Science Support Partnership Program and Invasive Species and Terrestrial and Endangered Wildlife Resources Programs of U.S. Geological Survey in partial fulfillment of obligations to the “Vegetation change monitoring and adaptive management of non-native ungulates at the Big Island National Wildlife Refuge Complex” project. We thank the many staff and volunteers who gathered data and two reviewers for helpful comments.

LITERATURE CITED

